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1. Introduction

ABSTRACT

This review provides an up-to-date synthesis of the matrilineal phylogeography of a uniquely well-
studied Holarctic mammal, the brown bear. We extend current knowledge by presenting a DNA sequence
derived from one of the earliest known fossils of a polar bear (dated to 115 000 years before present),
a species that shares a paraphyletic mitochondrial association with brown bears. A molecular clock
analysis of 140 mitochondrial DNA sequences, including our new polar bear sequence, provides novel
insights into the times of origin for different brown bear clades. We propose a number of regional
biogeographic scenarios based on genetic data, divergence time estimates and paleontological records.
The case of the brown bear provides an example for researchers working with less well-studied taxa: it
shows clearly that phylogeographic models based on patterns of modern genetic variation alone can be
substantially improved by including data on historical patterns of genetic diversity in the form of ancient
DNA sequences derived from accurately dated samples and by using an approach to divergence-time
estimation that suits the data under analysis. Using such approaches it has been possible to (i) establish
that the processes shaping modern genetic diversity in brown bears acted recently, within the last three
glacial cycles; (ii) distinguish among hypotheses concerning species’ responses to climatic oscillations in
accordance with the lack of phylogeographic structure that existed in brown bears prior to the last glacial
maximum (LGM); (iii) reassess theories linking monophyletic brown bear populations to particular LGM
refuge areas; and (iv) identify vicariance events and track analogous patterns of migration by brown
bears out of Eurasia to North America and Japan.

© 2010 Elsevier Ltd. All rights reserved.

accumulated in large part through genetic studies of modern
populations. However, this approach alone may be insufficient to

Patterns of genetic variation can be used to evaluate the
importance of different historical processes affecting populations
and species (i.e., phylogeography; Avise, 2000). Information about
phylogeographic processes acting upon mammal species has been
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reveal the influence of historical processes in taxa that have
undergone recent demographic bottlenecks, because population
reduction increases the loss of genetic diversity through stochastic
drift. Analysis of modern samples also provides little information
about the timing of evolutionary events (e.g., divergence between
taxa), which can be essential for linking phylogeographic patterns
with particular historical processes. Indeed, inferences made on
the basis of modern samples alone have been characterised as
‘time trapped’ (Padbo, 2000). In some cases, this trap can be cir-
cumvented using DNA from ancient subfossil material to provide
direct information about historical phylogeographic patterns and
to calibrate molecular clock analyses. However, few species offer
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a sufficient abundance of ancient samples for this approach to be
possible. In this respect, the Quaternary phylogeography of the
brown bear Ursus arctos is unusually well-studied, since genetic
material from both modern and ancient samples has been exten-
sively sampled across a wide geographic range.

Due to its large size and habit of using caves (especially as
hibernacula) the brown bear has left a considerable trace in the
fossil record (e.g. Sommer and Benecke, 2005; @stbye et al., 2006).
Polar bears are believed to have diverged from brown bears in the
late Pleistocene (see discussion below); and prior to this the brown/
polar bear branch shared a common ancestor with cave bears Ursus
spelaeus. Pioneering paleontological work placed the divergence
between brown and cave bear lineages at approximately 1.2—1.7
million years ago (Kurtén, 1968). Evidence from more recently
discovered sites (e.g., Vallonet, Atapuerca, Untermalf3feld, Cal Guar-
diola) has revealed apparently intermediate ancestral forms from
the Epivillafranchian — 0.9—1.2 million years ago — providing broad
support for Kurtén’s (1968) estimate but raising the possibility of

a slightly more recent divergence time (Mazza and Rustioni, 1994;
Garcia and Arsuaga, 2001; Garcia, 2004; Madurell-Malapeira et al.,
2009). Support for the approximate timing of this divergence
event has also been provided by genetic studies (Loreille et al., 2001;
Korsten et al., 2009).

Currently, the brown bear is one of the largest extant terrestrial
carnivores and has a wide Holarctic distribution (Fig. 1a). The status
of the brown bear as a useful animal model in Pleistocene bioge-
ography appears to have come about due to general interest in the
biogeography of large mammals and concerns about the conser-
vation of particular local brown bear populations. In addition, the
modern brown bear population is widely distributed, and the
relative availability of subfossil genetic samples has made large-
scale genetic analysis of ancient populations possible. While certain
phylogeographic patterns exhibited by modern brown bear pop-
ulations have been characterised as paradigmatic (Taberlet et al.,
1998; Hewitt, 2000; Korsten et al.,, 2009), there has been little
attempt to integrate ancient and modern genetic analysis with

Fig. 1. a. The current (dark shade) and additional historical (light shade) distribution of brown bears. The approximate geographic distribution of extant matrilineal clades 1-6 and
Iran [Ir] (following Leonard et al., 2000; also including data from Shields et al., 2000; Miller et al., 2006 and Korsten et al., 2009; see Fig. 3 and text for further details) is shown. Note
that the distribution area of polar bears (clade 2b) is unshaded. b. Coverage of major biomes in the Northern hemisphere during the last glacial maximum (LGM; approximately
18 kyBP), adapted from Ray and Adams (2001). Note that the tundra zone extending from Europe through central and northeast Eurasia contained some areas with forest coverage
(Crowley, 1995; Alfimov and Berman, 2001; Willis and van Andel, 2004; Kuzmin, 2008). c. Putative LGM refuge areas (approximate locations marked as filled areas with dashed
outline) and post-LGM colonization routes (filled arrows) for brown bears. Refuge area locations: IB — Iberia; IT — Italo-Balkan peninsula; CM — Carpathian Mountains; CA —
Caucasus; UR — Ural Mountains; CS — central Siberia; NAF — North Africa; ME — Middle East; SA — south Asia; JA — Japan; BE — Beringia; PC — Pacific coastal islands; NA —
continental North America (Matheus et al., 2004). The clade(s) putatively occupying each area is given after the area identity. The scenario presented here includes several details
that are particularly uncertain: (i) colonization of north-east Europe, northern Asia and western Alaska by subclade 3a may have been from a single or multiple refuge areas broadly
corresponding to the areas CM, CA, UR or CS (a large single refuge area scenario is shown here); (ii) the contribution of populations in the different European peninsulas to the
recolonization of Europe by clade 1 is uncertain (the model of Taberlet et al., 1998 is presented here; see text for more details); and (iii) the PC refuge area may not have been
occupied by subclade 2a at the time of the LGM.
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molecular-clock timing estimates and paleontological evidence to
reveal wide-scale patterns. Such an approach has the potential to
shed new light on established theories (Knowles, 2009); including,
in the case of the brown bear, those relating to the colonization of
North America and population responses to climate change.
Moreover, at a time when technological advances are permitting
the use of increasingly powerful molecular methods (e.g., high-
throughput sequencing), a synthesis of results derived from tradi-
tional sequencing of short molecular markers provides a baseline
against which to compare new data. More generally, insights
gained from the brown bear can serve as a useful guide for studies
of species where data are more limited; for example, where only
modern DNA sequences are available.

In this review, we synthesise the results of 33 studies published
between 1991 and 2010, which to the best of our knowledge
represent all matrilineal phylogeographic studies from throughout
the brown bear geographical range (Table S1). Furthermore, we
present valuable new genetic data from one of the oldest known
fossil polar bears (dating to 115 kyBP), a species that shares a par-
aphyletic association with brown bears on the basis of mitochon-
drial studies. In order to estimate the timing of evolutionary events
within the brown bear lineage, we present a new molecular clock
analysis including the new polar bear sequence and a combination
of paleontological and ancient DNA calibrations. Using these timing
estimates, along with patterns of modern and historical phylo-
geographic structure, and paleontological records, we propose
regional biogeographic scenarios that illustrate different processes
acting on brown bears during the late Quaternary.

2. Mitochondrial sequence analysis

Currently, three basic genetic marker systems are available for
animal phylogeography studies: (i) mitochondrial DNA (mtDNA),
which can be used to characterise the evolution of female lineages;
(ii) autosomal markers such as microsatellites, which reflect the
combined history of female and male lineages; and (iii) sex chro-
mosome markers, such as male-specific Y-chromosome micro-
satellites in mammals, which can be used to characterise the
evolution of male lineages. In common with many animal phylo-
geography studies, the majority of brown bear research has hith-
erto relied on analysis of mtDNA sequence data (Table S1). Nuclear
microsatellites have for the most part only been used in population
genetic studies covering relatively limited geographic areas (e.g.,
Taberlet et al., 1995, 1997; Paetkau et al., 1998; Cronin et al., 1999,
2005; Waits et al., 2000; Miller and Waits, 2003; Jackson et al.,
2008); though a recent study revealed population genetic param-
eters in a population inhabiting a large part of northeastern Europe
(Tammeleht et al., 2010). Nonetheless, current advances in
sequencing technology are likely to make available a number of
additional markers from the brown bear nuclear genome in the
near future, including single nucleotide polymorphisms, insertional
(viral) markers (e.g., Chessa et al., 2009) and Y-chromosome
polymorphisms.

mtDNA is a useful genetic marker for phylogeographic studies
because it is present in cells in high copy number (especially useful
in ancient DNA analyses), does not usually recombine and is char-
acterised by relatively rapid mutation rates and coalescence times.
It is also maternally inherited, which makes it useful for studying
wide-scale phylogeographic patterns in species such as the brown
bear where females are more philopatric (i.e., they do not disperse
far from their natal range) than males (McLellan and Hovey, 2001;
Stgen et al., 2006; Zedrosser et al, 2007). In such species,
geographic structure in female-specific genetic markers is likely to
change more slowly than that in autosomal biallelic genetic
markers, and hence is more likely to retain the signatures of ancient

phylogeographic processes. However, a maternally inherited
marker might not represent the phylogeography of an entire species
precisely because it does not reflect male-mediated gene-flow. It
would undoubtedly be of great interest to investigate wide-scale
patterns of genetic diversity using autosomal and Y-chromosome
nuclear markers. However, the remainder of this review will
consider only the maternal phylogeography of brown bears, based
on analysis of mtDNA, since the characteristics of mtDNA and level
of previous work using this marker mean that it currently provides
a more comprehensive picture than other approaches.

Most phylogeographic studies of brown bears have used
sequences from the hypervariable 5’ end of the non-coding control
region (CR) within the mitochondrial genome (Table S1; Fig. 2). A
rapid mutation rate makes the CR a useful marker for recent
intraspecific phylogenies, but also leaves it prone to saturation
(multiple substitutions at single sites) meaning that some charac-
ters may be homoplasious (i.e., identical by chance, not by common
descent). Sections of the cytochrome b gene (cytb; Table S1; Fig. 2),
which has a slower mutation rate, have also been used. With recent
technological advances, it is becoming easier to sequence longer
sections of DNA, which is important because this generally leads to
improved phylogenetic resolution. The sequencing of entire mito-
chondrial genomes, from modern and ancient samples, is now
a realistic aim for phylogeographic studies (Gilbert et al., 2008;
Millar et al., 2008; Stiller et al., 2009; Ho and Gilbert, 2010), and
recently a small number of brown and polar bear mitochondrial
genome sequences have been published (Bon et al., 2008; Krause
et al., 2008; Lindgqvist et al., 2010). However, common sequences
shared by different studies are short, and the most comprehensive
global phylogenies attempted so far have been based on <229 bp of
the CR (Fig. 2; Miller et al., 2006; Ho et al., 2008a; Korsten et al.,
2009).

3. Sampling of modern brown bear mtDNA diversity

To provide an indication of the confidence with which conclu-
sions about large-scale biogeographic scenarios can be drawn, it is
informative to consider sampling effort throughout the brown bear
range. Modern mtDNA sequences have been characterised from 22
out of the 48 countries in which the species currently occurs (Table
S1; McLellan et al.,, 2008), with continental-scale variation existing
in sampling effort. It is currently estimated that there are close to
200 000 brown bears worldwide, of which approximately 14 000
live in Europe, 110 000 in Asia (including the whole of Russia) and
58 000 in North America (McLellan et al., 2008). Meanwhile 596,
332, and 873 individual modern (defined as animals living within
the last 30 years) brown bear individuals have been sampled in these
respective regions (Table S1), which corresponds to 4.3%, 0.3% and
1.5% of all bears in the respective current populations, i.e., sampling
rates differ between Europe and Asia by a factor of approximately 15.
Small numbers of samples from Siberia and southern Asia have been
analysed (Table S1), but given the current abundance of bears in the
former area and the status of Asia as the putative origin of the
species, these represent the geographic areas that are least well
sampled.

4. Sampling and analysis of ancient brown bear DNA

To date, ancient DNA sampling has largely focused on putative
glacial refuge areas in the south and west of Europe (44 individuals)
and the north-west of North America (44 individuals), with further
samples derived from North Africa and the Middle East (27 indi-
viduals; Table S1). In common with analysis of modern sequences,
ancient DNA analysis has concentrated on the CR; however, due to
the particular challenges posed by degradation of samples (Lindahl,



J. Davison et al. / Quaternary Science Reviews 30 (2011) 418—430 421

Fig. 2. Publicly available mitochondrial DNA sequences (dark bars) used in brown bear phylogeography studies. Where sequences of different lengths were used in individual
studies, the longest are shown here. In addition to the sequences shown here, full mitochondrial genome sequences (c 17 000 bp) have been used in recent phylogeographic work by

Lindqvist et al. (2010).

1993; Willerslev and Cooper, 2005; Rohland and Hofreiter, 2007),
the resulting sequences have typically been slightly shorter than
those derived from modern samples (Fig. 2; Table S1).

5. Global genetic diversity

An important aspect of phylogeography is the identification of
monophyletic groups of individuals (i.e., clades) that share closer
common ancestry with one another than with members of any
other group. Among modern bear populations, a number of diver-
gent and for the most part geographically distinct clades have been
identified, largely on the basis of CR data but generally also sup-
ported by analysis of cytb (Fig. 3; node support values in Table 1).
The nomenclature for the clades proposed by Leonard et al. (2000),
and extended by later authors (Barnes et al., 2002; Miller et al.,
2006; Calvignac et al., 2008, 2009) to include six numbered
clades (1-6) and two clades named on the basis of their
geographical provenance (Iran and North Africa), represents the
most widely recognised terminology and will be followed in the
remainder of this review.

The well-supported clades (i.e., concordant across studies and
with high statistical support) fall into two broad clusters — clades 1
and 2 on one hand and clades 3, 4 and the Iranian clade on the other
(Fig. 3; Table 1); however, the relationships of clades 5, 6 and the
North African and Iranian clades with the aforementioned clades
are not clear (though for a well-supported partial phylogeny con-
taining the Iranian and North African clades, see Calvignac et al.,
2009). Within some clades, a significant level of divergence has
led to the identification of monophyletic subclades (Fig. 3). While
modern populations of clades 1 (Europe), 4 (North America and

Japan), 5 (Asia) and 6 (Asia) currently occur in relatively restricted
geographical areas, clade 3 has a wide distribution encompassing
Europe, Asia and North America (Fig. 1a).

A striking aspect of modern brown bear phylogeography is that
the different clades and subclades are on the whole geographically
separate from one another (Fig. 1a). Assessing the degree to which
this pattern supports different hypotheses about brown bear
biogeography has been an important component of many of the
studies listed in Table S1, and is discussed below. Ancient DNA
studies have tracked the historical occurrence of clades 1, 2, 3, and 4
in Europe, North America, North Africa and the Middle East, while
revealing a divergent extinct clade in North Africa.

6. The phylogenetic placement of polar bears

Mitochondrial DNA analysis of North American ursids has
revealed that polar and brown bears share a paraphyletic rela-
tionship (Cronin et al.,, 1991; Shields and Kocher, 1991; Talbot and
Shields, 1996). Thus, brown bears of subclade 2a are more closely
related to polar bears (subclade 2b) than to other brown bear clades
(Fig. 3). Nonetheless, the polar bear possesses many derived char-
acters that have been used to assign species status, and its range is
generally separate from that of the brown bear (see Fig. 1a). This
relationship represents an example of incomplete lineage sorting.
Given enough time, and assuming that neither species becomes
extinct, the brown bear and polar bear will eventually become
mutually monophyletic.

Here, we present a mtDNA control region sequence (246 bp)
derived from an ancient polar bear subfossil (a rib bone; from
“Norcem” cave in Kjopsvik, North Norway N 68°05/, E16°22’;
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Fig. 3. Schematic representation of a phylogeny containing all well-resolved brown bear taxa, generalised from wide-scale phylogenies in Ho et al. (2008a) and Korsten et al. (2009),
and the individual studies presented in Table S1 (statistical supports for nodes are shown in Table 1). Numerical clade nomenclature, following Leonard et al. (2000) is shown as is
the approximate geographical distribution of each clade — see also Fig. 1a. Nodes for which timing estimates have been calculated are labelled A—P (see Table 1).

Collection number KJ91-2a, Osteology Collections, Bergen Museum,
Norway). The rib bone was found along with a polar bear metatarsal
and vertebra disk (within 2 m of each other in the same stratum; all
specimens were identified by Dr R. Lie, Osteological Collections

Table 1

Curator, Bergen Museum). Initial radiocarbon dating of the specimen
returned a date of 42 4 1.5 kyBP. However, this date almost certainly
reflected the upper temporal limit of the technique for several
reasons. First, the fossil rib was situated below a clay layer from

Posterior probability support for brown bear clades and times to most recent common ancestor (node ages), using different molecular clock calibrations. Nodes A—P corre-
spond to those shown in Figs. 3 and 4. Support values for brown bear clades are shown from this analysis (control region; CR) and Korsten et al. (2009) (cytochrome b gene;

cytb).
Node Node description (MRCA of listed clades) Support Node age (kyBP)
CR cytb Multiple Multiple Internal External Imported
calibration® calibration” calibration calibration substitution rate
A All sampled brown bears 1.0 1.0 263 (162—400) 193 (114-325) 143 (100-200) 974 (410—-1920)°  8509*
550—700%"

B Clade 2 1.0 — 160 (124—210) 102 (60—163) 77 (56—106) 415 (209—659)° 146—185'"

C Clade 2b (polar bears) 1.0 1.0 146 (120—-179) 49 (22-97) 37 (21-60) 208 (55—398)° —

D clades 3 and 4 1.0 1.0 140 (87—213) — - 702 (290-1390)  280—515"
300—500"

E Clade 3 0.86 1.0 114 (74—-166) 100 (69—148) 79 (61-103) 525 (307—793)° -

F Clades 2a and 2c 0.94 - 113 (66—161) - 51 (26—85 - -

G Clade 1 (extant; Europe, Middle East) 1.0 1.0 100 (49—164) 81 (45—144) 60 (42—89) 394 (150—790)* -
415 (198—646)°

H Clades 3a and 3b 055 1.0 92 (51-133) - 35 (11-75) 374 (89-741)° 245-310"
500—1400“"

I Clade 3c (extinct; N America) 0.98 — 87 (59—121) 79 (58—112) 69 (57—-87) 260 (147—394)° -

] Clade 4 (extant; N. America; Eurasia) 0.81 — 87 (42—147) 74 (42—-137) 54 (37-87) 458 (167—755)° -

K Clade 3b (extant; N. America, Eurasia) 0.53 1.0 75 (43—113) 66 (40—104) 51 (32-77) 380 (168—620)° —

L Clade 1a (extant; Europe) 0.82 — 66 (32—109) — — — —

M Clade 2c (extinct; N America) 1.0 — 64 (48—87) 57 (48-76) 53 (48—-64) - -

N Clade 1b (extant; Europe) 0.80 - 63 (40—98) - - - -

0] Clade 3a (extant; N. America; Eurasia) 0.96 0.79 49 (18—86) 41 (17-72) 26 (13—46) 362 (67—735)° —

P Clade 2a (extant; N. America) 0.97 1.0 45 (10-91) 33 (12—64) 24 (11-43) 72 (17-149)° -

Externally calibrated and imported-rate estimates are from: (a) Hofreiter et al. (2002), (b) Ho et al. (2008a), (c) Matsuhashi et al. (1999), (d) Taberlet and Bouvet (1994), (e)
Talbot and Shields (1996); and (f) Waits et al. (1998). Ages are presented as means with 95% higher posterior density intervals in parentheses or a single or range of point

estimates (+

)

& Multiple-calibration estimates are those calculated in this study (incorporating the new polar bear sequences).
" Multiple-calibration estimates and internally calibrated estimates are taken from Korsten et al. (2009), except internally calibrated nodes H and P, which are from Ho et al.

(2008a).
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which other specimens (calcareous concretions that formed after
the clay was deposited) have been dated to 70 + 8.5 kyBP using
230Th /234y (Lauritzen et al., 1996; Nese and Lauritzen, 1996). This
dating technique is a robust approach that requires 5—7 parallel
dates from the same horizon (Hillaire-Marcel and Causse, 1989).
Second, the rib was obtained from a depositional horizon with
a magnetic signature close to reversal, which is compatible with
a transitional field configuration, most likely representing the onset
or termination of a paleomagnetic excursion. Given the minimum
230Th 234y estimate, the observed signature could correlate with the
Norwegian-Greenland Sea event (70—76 kyBP; Bleil and Gard, 1989)
or the Blake event (approximately 115 kyBP; Denham et al., 1977;
Zhu et al., 1994). However, the thick layer (50 cm) of clay capping
the bone layer and the fact that in this environment calcareous
concretions tend to form during periods of climatic amelioration at
the end of stadials are not consistent with the younger event. Thus,
an age corresponding to the Blake event (approximately 115 kyBP) is
taken as the best estimate for the specimen. It is notable that strata
corresponding to the Blake event are known from other European
caves (Bosak et al., 2004). DNA extraction and amplification details
are presented in the supplementary material. The polar bear
sequence has been submitted to GenBank (accession numbers
HM584820-HM584821).

While this review was in preparation, a whole mt genome was
generated from another ancient polar bear specimen (Lindqvist
et al, 2010) of equivalent age (110—130 kyBP; Ingdlfsson and
Wiig, 2008) from Svalbard. The homologous region from the mt
genome from the Svalbard specimen (Genbank accession
GU573488) is similar but not identical to the one presented in this
study, with 5/247 bp varying between the two sequences.

7. Estimating time-scales for population divergence

In order to infer phylogeographic processes from patterns of
genetic diversity, it is essential to understand the time-scales
during which evolutionary events may have occurred. With such
information, it becomes possible to link genetic patterns with
historical parameters, such as climatic fluctuations (Hundertmark
et al., 2002; Shapiro et al., 2004; Saarma et al., 2007) or domesti-
cation (Ho et al., 2008b). Various attempts have been made to
estimate the timing of splits between brown bear clades using
different molecular clock techniques, which all rely on the accurate
determination of a nucleotide substitution rate. In turn, this
depends on appropriate calibration using an independent source of
age information, such as the fossil record.

The importation or calculation of a nucleotide substitution rate
has the potential to be the single most important source of error in
molecular clock calculations. This is exemplified by the timing
estimates made for the evolution of brown bear clades, which vary
up to four or five-fold depending on the choice of imported (from
other species), external (calculated using interspecific age infor-
mation), internal (using intraspecific age information) or multiple
(combination of interspecific and intraspecific age information)
calibration points (Table 1, see Supplementary Material for
discussion of calibration techniques applied to brown bear timing
estimates). For datasets containing a mixture of closely and
distantly related taxa, a multiple-calibration approach including
a temporal range of age information appears to represent the most
theoretically sound approach (Korsten et al., 2009). In this paper,
we extend Korsten et al.’s (2009) multiple-calibration analysis to
incorporate the two new ancient polar bear sequences (from this
study and Lindqvist et al., 2010); resulting in a total of 140
sequences from clades 1, 2, 3 and 4. Otherwise, our analysis fol-
lowed that of Korsten et al. (2009); see Supplementary Material for
details and a BEAST input file. The ages of the most recent common

ancestors (MRCAs) of brown bear clades are presented in Table 1.
The ages of nodes are on average 40% older than the respective
figures from the analysis of Korsten et al. (2009) (Table 1), sug-
gesting that the addition of the ancient polar bear sequences had an
important effect on calibration.

During the last million years, the earth’s climate has oscillated
between relatively long, cold glacial periods and shorter, warmer
interglacials, with each cycle lasting approximately 100 ky (Petit
et al., 1999; Jouzel et al.,, 2007). Previous estimates produced
using imported substitution rates or external calibration suggested
that divergences between extant brown bear clades started <9
glacial cycles before present (Table 1). By contrast, internal- and
multiple-calibration estimates place all the divergences within the
last three glacial cycles, with the majority occurring during the last
glacial period (Fig. 4; Table 1). The discrepancies between estimates
produced by different calibration approaches indicate the impor-
tance of appropriate calibration for phylogeographic inference.
Moreover, the relatively recent timing estimates produced by the
multiple-calibration approaches (theoretically the most suitable
approach for this data set) make inference more straightforward,
since the climate and land cover during the most recent glacial
period is better understood than that of earlier periods (Fig. 1b; e.g.,
Ray and Adams, 2001; Svendsen et al., 2004). A further important
conclusion is that the genetic diversity currently observed in brown
bears arose far more recently than the split between the brown
bear and its close relative, the cave bear (>1 million years ago;
Loreille et al., 2001). This implies that considerable genetic varia-
tion remains unsampled or, more likely, has been lost, such that all
modern clades descend from a relatively recent common ancestor.
Widespread loss of genetic diversity during the late Pleistocene has
been demonstrated for a range of other extant and extinct large
mammals, including steppe bison (Shapiro et al., 2004), muskox
(Macphee et al., 2006) and cave bears (Knapp et al., 2009), and
a widespread extinction of megafauna occurred at this time
(Barnosky et al., 2004).

Our analysis places the separation between polar bears and the
most closely related brown bear clades at approximately 160 kyBP.
This estimate is in good accordance with the mean estimate of
Lindqvist et al. (2010) (152 kyBP), which was derived using longer
sequences, but with only one of the ancient polar bear samples.
This is indicative that partial CR sequences may provide reliable
estimates. Our timing estimate is also concordant with the pale-
ontological view that polar bears evolved from a brown bear pop-
ulation in the late Pleistocene (Kurtén, 1964). In combination with
data on the morphology and stable isotope content of the ancient
polar bear fossils (Lindqvist et al., 2010), these timing estimates
indicate that the polar bear underwent rapid morphological
evolution shortly after diverging from brown bears.

8. Regional biogeographic scenarios

The following sections combine information derived from
modern and ancient mtDNA analysis, multiple-calibration esti-
mates of divergence times and paleontological data to create
regional biogeographic scenarios for brown bears during the mid-
late Pleistocene and Holocene. Greatest detail is reserved for the
two best-studied regions: North America and Europe.

8.1. Phylogeography of North American brown bears

Three genetically divergent clades have been identified among
modern bears living in North America: 2, 3 and 4. Clades 2 and 3 are
further divided into four modern subclades — 2a, 2b, 3a and 3b
(Fig. 3; Talbot and Shields, 1996; Waits et al., 1998) — while bear
remains corresponding to two extinct subclades, 2¢ and 3c (Fig. 3),
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Fig. 4. Divergence of brown bear matrilineal clades in relation to climatic oscillations during the late Pleistocene and Holocene. Surface temperature estimates (°C) derived from
isotope analysis of Antarctic ice cores covering the last 250 kyBP are presented relative to the 1950 temperature (Jouzel et al., 2007). Mean estimates of the time to most recent
common ancestor (MRCA) for different brown bear clades, with labels corresponding to nodes in Fig. 3 and Table 1, are shown by dashed lines.

have been dated to >48 kyBP (Leonard et al., 2000; Barnes et al., contiguous United States and southern Canada (Fig. 5d); though
2002). The modern clades and subclades are geographically sepa- subclades 3a and 3b form a narrow zone of overlap in the Arctic
rate: subclade 3a is currently found in northwestern Alaska; sub- National Wildlife Refuge in Alaska (Talbot and Shields, 1996; Waits
clade 3b in eastern Alaska and Canada; and Clade 4 in the northern et al., 1998). Moreover, analysis of ancient samples has indicated

Fig. 5. Late-Quaternary phylogeography of North American brown bears: a) 70—33 kyBP; b) 33—21 kyBP; c) 21-10 kyBP; and d) 10 kyBP-present. Symbols represent radiocarbon-
dated or known-age subfossil bear remains that have been subject to genetic analyses (circles with clade marked) or not (triangles); note that within each time period
geographically proximate records are represented by a single symbol. Clade nomenclature follows Leonard et al. (2000). The distribution of modern brown bear clades (dashed
lines) is taken from Waits et al. (1998), and the extent of glacial ice is reproduced from Mandryk et al. (2001). Sources of subfossil bear data are listed in the Supplementary Material.
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that a degree of phylogeographic structure might have existed since
the colonization of the continent, with only the distribution of
clades changing over time (Barnes et al., 2002).

Climatic shifts, combined with strong environmental region-
alism in Alaska and Canada (Kotilainen and Shackleton, 1995; Lister
and Sher, 1995), may have contributed to the maintenance of
marked division by causing isolation and extinction of local pop-
ulations. Equally, a high level of natal female philopatry means that
female bears do not rapidly invade areas that are already occupied
(McLellan and Hovey, 2001). Thus, areas of overlap, or contact
zones, can occur if female population density is low, while rela-
tively high densities can prevent introgression of neighbouring
mtDNA clades into territory occupied by other clades (Hewitt,
1988). However, the phylogeographic pattern of North American
bears also provides an example of the importance of historical
colonization and vicariance events in shaping modern genetic
diversity.

8.1.1. Beringia as an important refuge area and migration corridor

The continents of Eurasia and North America are currently
separated by the Bering Strait, a stretch of water approximately
85 km wide and for the most part 30—50 m deep. On numerous
occasions during the Pleistocene, however, sea-level has decreased
sufficiently for this water body to disappear: the region served as
a land-bridge between Eurasia and North America during glacia-
tions, when sea-level was typically 100—135 m lower than today
(Hopkins, 1973; Clark and Mix, 2002). Hultén (1937) was the first to
postulate that an ice-free area of land connecting Eurasia and North
America could have served as a northern refugium for arctic and
boreal biota during glacial periods. Subsequent paleoecological
studies have confirmed that at the time of its last appearance, the
land-bridge represented a cold, dry steppe environment that was
nonetheless sufficiently productive to serve as an important refuge
area and migration corridor for many taxa, including brown bears
(Elias, 2001; Zazula et al., 2003; refuge area BE in Fig. 1c).

8.1.2. First colonization of North America

Fossil evidence suggests that the brown bear evolved in Eurasia
(Kurtén, 1968; Mazza and Rustioni, 1994) and only entered North
America through Beringia in the late Pleistocene, around 70 kyBP
(Craighead and Mitchell, 1982). Following the first colonization
(Fig. 5a), brown bears belonging to at least three different clades or
subclades were present in eastern Beringia until 33 kyBP: 3c
(present from >59 kyBP), 2c (>48 kyBP) and 4 (>36 kyBP) (Leonard
et al., 2000; Barnes et al., 2002). Multiple-calibration estimates
place the MRCAs of these subclades at 91 kyBP, 65 kyBP (Table 1)
and 50 kyBP (for North American clade 4 only; not shown in Table
1), respectively. These new estimates are consistent with these
clades forming as the result of colonization events at approximately
the time indicated by paleontological evidence. Besides continental
Beringia, fossil records indicate that brown bears also colonised the
Pacific coastal islands off Alaska (PC in Fig. 1c) prior to 35 kyBP and
remained there until at least 26 kyBP (Heaton and Grady, 1993,
2003; Heaton et al.,, 1996; Fig. 5a and b); however the genetic
identity of these bears is unknown. Interestingly, no brown bear
bones have been found in eastern Beringia dating to the period
33—21 kyBP (an absence perhaps attributable to competition with
the giant short-faced bear Arctodus simus; Barnes et al., 2002), and
examples of subclades 2¢ and 3c from after this period have not
been recovered (Fig. 5b).

It was originally thought that brown bears did not migrate
southwards from eastern Beringia before the postglacial period (i.e.,
until after 13 kyBP; Herrero, 1972; Kurtén and Anderson, 1980;
Barnes et al.,, 2002), but recently a clade 4 individual dated to
approximately 26 kyBP was recovered from near Edmonton

(Canada), in mid-continent North America (Matheus et al., 2004,
Fig. 5b). Thus, after entering North America, but prior to the disap-
pearance of bears from Beringia, some populations clearly migrated
south to the mid-territories of the continent (NA in Fig. 1c; Fig. 5b).

8.1.3. Second colonization of North America

Around the time of the last glacial maximum (LGM; 26—13 kyBP),
the Laurentide and Cordilleran ice-sheets covered a large area
between the mid-continent of North America and the current
Alaska-Canada border (Mandryk et al, 2001; Fig. 5c), thereby
restricting migrations from eastern Beringia southward and from
the mid-continent northward. Around 21 kyBP, a second wave of
brown bears, containing subclade 3b, entered Beringia from Eurasia
(Barnes et al., 2002; Fig. 5c). The timing of this event is of interest
since it coincides with the LGM and follows a period of 12 ky during
which brown bears were absent in the Beringian fossil record.
Assuming the fossil record accurately reflects the timing of this
event, north-east Eurasia must also have been inhabited by brown
bears at the time of or just prior to the LGM, as the immigrating
bears are highly likely to have arrived from this direction. The
relatively early MRCA of clade 3b (78 kyBP) supports Barnes et al.’s
(2002) view that the members of this clade that colonized North
America probably belonged to a relatively large, diverse population.

8.1.4. Third colonization of North America

The continental ice-sheets retreated at the end of the LGM
(13—9 kyBP), coinciding with a rise in sea-level and the reappear-
ance of the Bering Strait around 11—13 kyBP (Elias et al., 1996). This
blocked further movements of terrestrial mammals between Eur-
asia and North America. However, before the Bering Strait became
a definitive movement barrier, subclade 3a colonised Alaska (Figs.
1c and 5d). The recent arrival of this subclade in North America is
evident from phylogenetic analyses showing Alaskan and Eurasian
representatives of the subclade to be extremely similar (differing by
1 mutation in a 1942 bp section of mtDNA; Korsten et al., 2009) and
the lack of subclade 3a bears in the earlier Alaskan fossil record
(Leonard et al., 2000; Barnes et al., 2002).

The fossil record from the Alaskan coastal islands indicates an
absence of brown bear remains dating to 26—12 kyBP, while bears
occupying the area since 12 kyBP exclusively represent the previ-
ously unrecorded subclade 2a (Talbot and Shields, 1996; Barnes
et al.,, 2002). If bears did not survive the LGM in coastal Alaska
then it seems likely that subclade 2a entered North America at the
same time as subclade 3a. However, it is plausible that the gap in
the fossil record does not indicate a true absence, and that brown
bears survived the LGM in refuge areas on the west-coast of the
Alexander Archipelago (PC in Fig. 1c), an area that supported
various other taxa during the LGM (Carrara et al., 2003, 2007;
Kaufman and Manley, 2004). If this was the case then the most
parsimonious phylogeographic scenario would involve the bears
inhabiting the area prior to the LGM belonging to the clade
currently present, i.e., subclade 2a, and this subclade actually
constituting part of the first wave of colonization rather than the
third (Fig. 5a). The estimated age of the MRCA for subclade 2a of
45 kyBP is consistent with such a scenario, but could also indicate
a diverse founder population (see clade 3b above).

8.2. Phylogeography of European bears

Three mitochondrial subclades are currently present in Europe,
and, in common with the pattern in North America, their distri-
bution exhibits considerable geographic differentiation (Randi
et al., 1994; Taberlet and Bouvet, 1994; Kohn et al., 1995): sub-
clade 1a is found in northern (southern Scandinavia) and south-
western Europe (Spain and France); subclade 1b in the south and
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east of Europe (Italy, Slovenia, Croatia, Bosnia, Greece, Bulgaria,
Romania, Poland); and subclade 3a in the north-east and east of
Europe (northern Scandinavia, Finland, Russia, Estonia, Slovakia
and Romania) (Fig. 6d). Contact zones occur between 1a and 3a in
Sweden (Taberlet et al., 1995) and between 1b and 3a in Romania
(Kohn et al., 1995) (Fig. 6d). Broadly similar phylogeographic
structure has been revealed in other mammalian taxa, including
common shrew (Sorex araneus) (Fredga and Nawrin, 1977), bank
vole (Clethrionomys glareolus, also Myodes glareolus) (Tegelstrom,
1987) and root vole (Microtus oeconomus) (Brunhoff et al., 2003).
On this basis, the brown bear has been used to represent a common
phylogeographic model (Hewitt, 1999; Hewitt, 2000, see also
Korsten et al., 2009 for northeastern Europe and Asia).

8.2.1. Appearance of brown bears in Europe

Paleontological evidence regarding the appearance of brown
bears in Europe is equivocal. Kurtén (1968) concluded that the
species entered Europe during the mid-D-Holsteinian (approxi-
mately 230 kyBP), but more recently fossil remains of putative

brown bears dating to approximately 500 kyBP have been identified
(e.g., Moigne et al,, 2006; Sardella et al., 2006). Meanwhile, bear
remains from the early-Pleistocene (approximately 900 kyBP) that
exhibit mixed brown and cave bear features are considered by some
authors to represent early brown bear forms (Mazza and Rustioni,
1994), while others consider them to be ancestral or related
species (Baryshnikov, 2007). Irrespective of exactly when brown
bears appeared in Europe, it should be noted that the first bears
were not necessarily ancestral to the Late Pleistocene and modern
populations considered in the remainder of this section. Mean
estimates for the time since MRCA of European brown bears —
175 kyBP (Saarma et al., 2007) and 263 kyBP (this study; for all
studied bears) — are almost certainly more recent than the arrival of
the species in Europe.

8.2.2. Late Pleistocene up to the LGM (approximately 130—25 kyBP)
While little is known about brown bear distribution and phy-

logeography prior to the late Pleistocene (before 130 kyBP),

a greater number of fossil records from central and southern

Fig. 6. Late-Quaternary phylogeography of European brown bears: a) >25 kyBP; b) 16—25 kyBP; ¢) 16—1 kyBP; d) contemporary distribution. Symbols represent radiocarbon-dated
or known-age subfossil bear remains that have been subject to genetic analyses (circles with clade marked) or not (triangles); note that within each time period geographically
proximate records are represented by a single symbol. Clade nomenclature follows Leonard et al. (2000). The distribution of modern brown bear populations (McLellan et al., 2008)
is shaded, and the identity of corresponding clades is taken from Taberlet and Bouvet (1994), Randi et al. (1994), Kohn et al. (1995), Taberlet et al. (1995) and Saarma et al. (2007).
The locations of known contact zones between modern clades are marked with dashed lines. The extent of glacial ice is reproduced from Svendsen et al. (2004). Sources of subfossil

bear data are listed in the supplementary material.
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Europe (Fig. 6a; Kurtén, 1968; Sommer and Benecke, 2005) are
available from the late Pleistocene up to the LGM (approximately
130—25 kyBP). Analysis of late Pleistocene samples has revealed
that lineages that cluster phylogenetically with modern clades 1
and 3 have been present in Europe for >100 ky (Fig. 6a; Hofreiter
et al.,, 2004; Valdiosera et al., 2008). Moreover, these records
reveal an intriguing phylogeographic pattern: both central Europe
and Iberia were home to bears representing ancestral clades 1 and
3. The sympatric occurrence of these divergent clades suggests that
the degree of phylogeographic structure currently observed in
Europe did not exist prior to the LGM (though the various subfossils
are not completely contemporaneous with each other).

Multiple-calibration timing estimates indicate that subclades 1a
and 1b shared an MRCA during the late Pleistocene (106 kyBP). This
figure has important implications for our understanding of the
relationship between patterns of genetic diversity and the climate
and in particular the expansion/contraction (EC) model (Hewitt,
1996). In the context of Europe, the EC model proposes that,
during glacial cycles, species repeatedly recolonised mainland
Europe from discrete Mediterranean refuge areas where a suitable
climate persisted even during cold periods. In light of the fossil
evidence indicating a lack of phylogeographic structure prior to the
LGM, the most plausible explanation was a repeating cyclical
process such that: (i) during each interglacial, some degree of
mixing occurred between monophyletic populations originating
from different refuge areas, resulting in genetically diverse
northern populations; (ii) however, at the onset of glacial maxima,
northern populations disappeared and the high densities of indi-
vidual lineages occupying the cores of particular refuge areas pre-
vented the introgression of mtDNA from other ‘immigrating’ clades
(Hofreiter et al., 2004). While such a process may have played a role
during the most recent glacial cycle, it is likely that early investi-
gations substantially overestimated time-scales for the divergence
of lineages. Multiple-calibration time estimation suggests that the
MRCA of clade 1 was sufficiently recent that repeated restriction of
subclades 1a and 1b into different refuge areas during multiple
glacial cycles did not occur (Table 1). Rather, these two subclades
descended from a common ancestral population that existed at the
start of the most recent glacial period (Fig. 4).

8.2.3. Last glacial maximum (LGM) and Holocene (25 kyBP until
present)

During the LGM, the Weichselian ice sheet covered northern
Europe, permafrost and tundra covered much of central Europe,
and the southern European peninsulas contained a mixture of
forest and steppe (Figs. 1b and 6b; Svendsen et al., 2004). Thus,
southern Europe is believed to have provided temperate species
with suitable conditions even at the height of the LGM. The
current distribution of genetic diversity among European brown
bears, whereby clade 1 is divided into two allopatric subclades, 1a
and 1b (Fig. 6d), suggest that the Iberian and Balkan/Italian
peninsulas were used as LGM refuge areas by these respective
subclades (Fig. 1c; Taberlet and Bouvet, 1994; Taberlet et al., 1998).
In light of the current European distribution of subclade 3a
(Fig. 6d), early studies similarly proposed that this subclade was
restricted to a glacial refuge area located somewhere in south-east
Europe or adjoining parts of Asia, possibly in the Caucasus (CA in
Fig. 1c) or Carpathian mountains (CM in Fig. 1c; Sommer and
Benecke, 2005; Saarma et al., 2007), where brown bear remains
dating to the LGM have been recovered (David, 1999; David et al.,
2003; Musil, 2003).

Paleoecological data and recent genetic studies have questioned
this neat refugial model. First, it is becoming clear that relatively
benign conditions existed north of the classical peninsula refuge
areas during the LGM, and that a number of tree and mammal

species were present in parts of central Europe during the LGM
(Stewart and Lister, 2001; Willis and van Andel, 2004; Sommer and
Nadachowski, 2006). While there are no clear-cut examples of
LGM-dated (c.18—20 kyBP) brown bear remains from outside
classical refuge areas, remains from Great Britain radiocarbon-
dated to 17670 + 140 and 24760 + 260 kyBP (Aldhouse-Green and
Pettitt, 1998; Fig. 6b) indicate that brown bears had a wide distri-
bution during cold periods. Second, ancient DNA studies have
shown some mixing of currently allopatric subclades 1a and 1b in
southern refugia during the LGM, suggesting gene flow across
southern Europe (Fig. 6b; Valdiosera et al., 2007, 2008).

These observations suggest that the simplest refuge models and
versions of EC theory require some modifications or additions to
explain both current and historical patterns of phylogeographic
structure. Possible explanations could be that: (i) the monophyletic
northern populations of the modern day originated from geneti-
cally diverse refuge populations, and many lineages were lost from
rapidly increasing Holocene populations through leptokurtic
expansion, i.e., the leading edge of the colonising populations
became progressively less diverse as a result of a series of genetic
bottlenecks (Hewitt, 1996, 2000); (ii) refugial populations may have
displayed differential responses to changing conditions or there
may have been population substructure within glacial refuge areas
(Gémez and Lunt, 2007), such that bears from certain populations
dominated the recolonization of northern latitudes; among beech
(Fagus sylvatica) populations restricted to the south of Europe
during the LGM, certain subpopulations expanded to recolonise
much of the continent, while others continued to inhabit a small
area or even declined in size (Magri, 2008); or (iii) the declining
distribution of some subclades in the south and west of Europe
during the Holocene and an associated loss of genetic diversity may
be explained by stochastic processes acting on populations that
were declining as a result of human activity (Irwin, 2002;
Valdiosera et al., 2007).

9. Brown bear phylogeography in other regions

Brief summaries of brown bear phylogeography in other regions
are presented here. Further discussion can be found in the
Supplementary Material.

9.1. Northern continental Eurasia

Clade 3a is practically the only subclade reported in the vast area
of northern continental Eurasia (Saarma et al., 2007; Korsten et al.,
2009; Murtskhvaladze et al,, 2010). This population underwent
a severe bottleneck and is descended from a fairly recent common
ancestor (Korsten et al., 2009; subclade 3a Table 1). However, it is
not clear whether the ancestral population was limited to a single
small LGM refuge area (e.g., CM, CA, UR or CS; as proposed by
Korsten et al., 2009) or whether it was present in a larger area or in
multiple areas, as indicated by the pre-LGM timing of the MRCA
(Table 1) and LGM-dated fossil records from sites in the Carpathian
and Ural mountains, and further east in Russia (Fig. 1¢).

9.2. Japan

In Japan, brown bears are only present on Hokkaido, the second-
largest and northernmost island. Phylogeographic investigation has
revealed three well-supported distinct brown bear clades, corre-
sponding to 3a, 3b and 4, which are also geographically separate
from one another (Masuda et al., 1998; Matsuhashi et al., 1999;
Korsten et al., 2009). Molecular date estimates (Table 1) and
paleogeographic data are consistent with multiple colonizations:
by 3a approximately 12—18 kyBP; and by 3b and 4 earlier in the
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most recent glacial period, perhaps coinciding with the coloniza-
tions of North America by these latter clades.

9.3. South Asia, Middle East and North Africa

While little is known about brown bear phylogeography in
South Asia, recent work has provided important information about
North African and Middle Eastern populations (Calvignac et al.,
2008, 2009). In particular, it is clear that that these areas have
historically been home to endemic divergent clades: 5, 6, North
Africa and Iran. It is also clear that the population currently found in
south-west Europe that is characterised by clade 1 previously
inhabited a larger area in the Middle East and North Africa, even in
recent historical times.

10. Implications for phylogeographic study and future
approaches

Aside from Homo sapiens, the brown bear is arguably the best-
studied extant mammal in terms of its Pleistocene—Holocene
biogeography. Decades of research have revealed in considerable
detail the spatial and temporal dynamics of different populations and
genetic lineages. Complex patterns of migration, colonization and
vicariance have been described, and inferred population responses to
climate change have challenged the prevailing paradigm.

The case of the brown bear also provides a cautionary example
for case studies on species where data are more limited. It is widely
acknowledged that phylogeographic interpretation can benefit
from the incorporation of information from climatology, paleon-
tology and ancient DNA analysis in addition to the traditional
approaches of population genetics and phylogenetics (e.g.,
Knowles, 2009). Indeed, it is clear that the interpretation of brown
bear phylogeography is influenced considerably if any one of the
following sources of data is not considered: modern DNA data;
ancient DNA data; suitably calibrated molecular clock estimates;
and paleontological data. This is not to say that every aspect of
brown bear phylogeography is well understood. The use of longer,
more informative mtDNA sequences, including full mitochondrial
genome sequences, has the potential to greatly assist phylogeo-
graphic interpretation. The current use of a short section of CR for
phylogenetic analysis means that time estimates may be biased due
to homoplasy and are generally associated with considerable
uncertainty. The use of coding regions and longer sequences from
ancient samples would represent a considerable advance. While
areliance on mtDNA — which represents a single locus and can only
inform about the female lineage — is widespread in animal phylo-
geography, it clearly limits the questions that can be posed and the
interpretation of results. Moreover, there is ongoing debate
surrounding the reasons for observed discrepancies between
mitochondrial and nuclear phylogeographic studies (Zink and
Barrowclough, 2008; Barrowclough and Zink, 2009; Edwards and
Bensch, 2009). Given this, the use of autosomal and Y-chromo-
some markers over a wide geographic scale can complement and to
an extent corroborate results obtained using mtDNA.

Phylogeographic inference is also hampered by uncertainty
regarding the phylogenetic positions of certain mitochondrial
lineages in south Asia, and, to a lesser extent, the Middle East and
Japan. Meanwhile, certain geographical areas, including large parts
of Asia, require more extensive sampling. The value of ancient DNA
samples from putative refuge areas has been very well demon-
strated in Beringia and Iberia (Leonard et al., 2000; Barnes et al.,
2002; Valdiosera et al., 2008); similar studies elsewhere, espe-
cially in Asia — the putative origin of brown bears — could provide
further important insights into the processes acting upon refugial
populations.
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